求平均数教学设计
作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么你有了解过教学设计吗?下面是小编帮大家整理的求平均数教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
求平均数教学设计1教学内容:《数学》三年级下册第58、59页
教学目标:
1.通过丰富的实例,经历进一步了解“平均数”意义的过程。
2.能够根据具体情境,利用“平均数”解决生活中的实际问题。
3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。
教学准备:CAI课件。
教学过程:
教学环节
设计意图
教学预设
一、情境创设:
同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?
去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片
二、探究与体验;
1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)
95分
95分
96分
85分
98分
93分
你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。
2.全班交流:
刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。
指名回答。
生评价谁算得对。
4.师小结过渡:
是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?
5.议一议:
师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:
第一次
第二次
第三次
第四次
第五次
167厘米
167厘米
167厘米
167厘米
167厘米
那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。
全班交流。
6.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的最后成绩,而不是用他几次试跳的平均成绩。
7.通过以上的学习你了解到了哪些知识?
三、实践与应用;
师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?
1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。
第(3)个问题请同学们同桌交流自己的看法,然后集体交流。
2.出示第2小题,生独立完成,然后集体订正.
3.出示第三小题,生独立完成第一步,然后集体订正。
第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。
四、拓展与延伸:
出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?
请同学认真思考,然后和同桌说说你的想法。
从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。
让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。
培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。
让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,
对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。
在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的学生个别辅导。
对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。
让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。
在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“×××,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:
为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分。
学生可能有以下几种答案
1.(96+95+95+96+85
+98+93)÷7=94(分)
想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。
(2)(96+95+95+96+93)÷5=95(分)
想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。
还有可能出现计算错误的现象,让学生找出错误原因。
学生可能出现的回答有;
1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。
2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。
第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。
答案应该是下周应准备和本周售出总数同样多的饮料最合适。
什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。
“平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。
求平均数教学设 ……此处隐藏3299个字……均分。计算法:重点让学生理解平均分除了可以用移多补少的方法求出来外,还可以先求出各场得分总数,再除以上场的次数,也可以得出每个队员的平均分。
小结:同学们通过自己的探索,解决了选谁上场的问题。因为7号运动员的平均分11分高于8号运动员的平均分10分,所以应选7号运动员上场。同时,我们知道求平均数有两种算法,数据少的时候可以用移多补少的方法,数据多的时候用计算的方法会更方便。(板书课题和算式,如下)
(9+11+13)÷3=11(分)(7+13+12+8)÷4=10(分)
[评析:学生的学习过程充满了自主性、探索性与合作性。教师充分发挥学生的主体作用,放手让他们在开放的空间里运用手中的材料动手操作、自主探索,解决了问题。这既是一个学生自我探究的过程,也是一个相互交流的过程。教师只是以参与者、合作者的身份融入学生的活动中,和他们平等相处,及时获取反馈信息,引领学生归纳概括出平均数的计算方法。]
3、理解平均数的意义。
对10分的理解:你对10分这个数是怎样认识与理解的?与它的各场得分相比较,你有什么发现?10分是8号运动员哪一场的得分?
对11分的理解:11分是7号运动员第三场的得分吗?为什么?它是什么?
小结:平均数比大数小,比小数大,介于二者之间。它不是一个实实在在的数,可能存在于一组数据之中,也可能不存在。平均数能较好地反映出一组数据的整体水平。(板书:比最大数小、比最小数大、较好地反映出一组数据的整体水平)
[评析:在学生的亲自感受中,他们用自己质朴而稚嫩的语言道出了他们对平均数意义的理解,虽然这只是粗浅的,但却是非常有价值的。]
三、实践运用,体验生活
在生活中,你见过平均数吗?
(学生列举日常生活中见到的平均数的例子)
在我们的生活、生产,特别是在统计当中,平均数的应用非常广泛,因为它能帮助我们了解事物的整体水平与分析存在的问题。
评价时,师问:看着王红的成绩,你想对她说点什么?
不计算,估一估他们的平均身高会是哪个答案?(让学生谈观点,加深对平均数意义的理解)
先不计算,同学们估计可能会是多少?然后用自己喜欢的方法计算一下,他们的平均成绩是多少次?
4。过河问题。
身高145厘米的小华,要过平均水深110厘米的小河到底有没有危险?(让学生在讨论的过程中,进一步感受平均数的意义)
通过这个题目的思考,你觉得应该对大家说点什么?(没错,徐老师希望同学们每天都能安安全全地来校,平平安安地回家)
[评析:练习设计由浅入深,形式多样,且能紧密联系现实生活实际,不仅加深了学生对本课知识的理解,同时提高了学生运用知识解决实际问题的能力。]
四、评价总结,拓展延伸
通过本节课的学习,大家肯定都想知道自己表现如何。现在请拿出学习评价表,给自己一个诚恳的评价吧!(附表,如下)
学习评价表
本节课,你认为自己的表现怎样?请在相应栏目中填上相应的分数,并算出平均分。(优秀90分,良好80分,一般70分)
(小组交流后,学生展示)
看着自己的评价表,你想对大家说点什么?你觉得本节课有什么收获?
师评价:其实,从平均分可以看出你整节课的表现还是非常不错的!徐老师相信在评价过程中,同学们又一次加深了对平均数的理解。
[评析:让学生自我评价,增强了学生数学学习的自信心。通过自己给自己打分及平均分的计算,既强化、巩固了本课学习的内容,再现了“求平均数”在生活中的实际应用,又体现了课程标准倡导的评价形式多元化的思想,同时还为随后的课堂小结作了巧妙的预设,可谓“一举三得”。]
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
求平均数教学设计6教学要求:
1、通过练习,进一步巩固求平均数的方法。
2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
教学重点:
解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
教具学具准备:
课件、统计。
教学过程:
一、理解平均数意义
“1”:说一说题目说的是一件什么事情?
平均水深140厘米是什么意思?是不是处处水深140厘米?
(不是,是有的地方比140厘米深,有的地方比140厘米浅)
“2”:自己看题,同桌讨论。
全班交流:
你认为哪些平均数是合理的,哪些是不合理的,为什么?
(1、3合理,2不合理)
二、求平均数的练习:
1、“3、4、6、7”题。
“3”:从表格里你了解到哪些信息?
独立解答(1)、(2),全班交流。
看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?
“4”:
(1)先算一算三年级平均每组植树的棵数。
假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?
假如是6棵呢?为什么?
看着这张统计图,你能不能给出平均数的范围?
(2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?
“6”:(1)同桌讨论,可以怎么估计?
介绍自己是怎么估计的。
(选取6个数据中处于较中间位置的一个,再看看其他的移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)
(2)你还能说出这个小组同学身高的哪些情况?
“7”:独立练习。
“你还发现什么?”尽量让学生从多角度说一说。
2、“5、8”题。
“8”:先说一说这一题的解决过程。
学生以小组为单位,调查、记录、解答问题。
“5”:课堂上老师指导说清要求,课后学生完成。
三、“你知道吗?”
举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?
学生计算:(47+78+80+81+82+82)÷6=75
去掉以后,是多少呢?
学生计算(78+80+81+82)÷4 约为80分
看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。
教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。